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Abstract The interface layer plays an important role

in stress transfer in composite structures. However,

many interface layer properties such as the modulus,

thickness, and uniformity are difficult to determine. The

model developed in this article links the influence of

the interface layer on the normal stress distribution

along the layer thickness with the layer surface mor-

phology before bonding. By doing so, a new method of

determining the interfacial parameter(s) is suggested.

The effects of the layer thickness and the surface

roughness before bonding on the normal stress distri-

bution and its depth profile are also discussed. For ideal

interface case with no interfacial shear stress, the

normal stress distribution pattern can only be mono-

tonically decreased from the interface. Due to the

presence of interfacial shear stress, the normal stress

distribution is much more complex, and varies dra-

matically with changes in the properties of the interface

layer, or the dimensions of the bonding layers. The

consequence of this dramatic stress field change, such

as the shift of the maximum stress from the interface is

also addressed. The size-dependent stress distribution in

the thickness direction due to the interface layer effect

is presented. When the interfacial shear stress is

reduced to zero, the model presented in this article is

also demonstrated to have the same normal stress dis-

tribution as obtained by the previous model, which does

not consider the interface layer effect.

Introduction

Both experimental studies and approximate analytical

solutions [1–6] indicate complex stress states with a

rapid gradient occurring along the edges of composite

structures. Thus, the so called boundary effects or edge-

induced stress phenomena have been intensively inves-

tigated. These effects result from the presence and

interaction of geometric and material discontinuities

through the laminate thickness [5]. Almost all solid-

state electronic components have the basic composite

structure of a substrate with one or multiple film

overlays [7]. Therefore the stress distribution due to

the geometric and material discontinuities is of

great concern for electronic components manufacturing,

processing, and reliability. An excellent and

comprehensive review article on this issue is given by

Hu [8].

Interface layer models including the shear–lag

(S–L)model [9] and the lap–shear (L–S) model [10, 11]

have been developed as a supplement/improvement to

the Timoshenko model of bimetal thermostat bending

induced by temperature [12]. The Timoshenko model

offers overall bending information for a composite

structure and the longitudinal force inside the layers, but

provides no information about the interfacial stresses,

which dominate the failure of multilayered materials

[13]. Geometrically, the Timoshenko model deals with

composite layers with finite width and thickness, but

infinite length. The longitudinal normal stress distribution

due to temperature difference predicted by the S–L

model is given as follows [9], which deviates signifi-

cantly from that predicted by the Timoshenko model

when the sample size reduces to the scale of micron

[14],
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rxx
f is the film longitudinal stress. Ef , Es and af , as are

the effective Young’s moduli and coefficients of thermal

expansion of the film and substrate, respectively. tf and ts
are the thickness of the film and substrate. l is half of

the film length. DT is the temperature deviation from the

temperature, at which the composite is in a zero stress

state. Gi and g are the shear modulus and thickness of

the interface layer, respectively. As indicated in Eq. 1

the interfacial parameter Gi

g along with bilayer elastic

moduli and dimensions determines the stress distribution.

Originally Gi

g was designed to account for the adhesive-

ness/bondedness at the layer interface, i.e., to provide a

simple path for introducing a non-ideal interface into the

model [14]. Mathematically, Gi

g is a fitting factor. How-

ever, a method to physically evaluate Gi or g is not

provided in those interface layer models. Without

explicitly specifying the parameter of Gi

g ; the S–L model

cannot predict even the simplest case of the thermo-

mechanical response of layered structures [14]. Also, as a

fitting factor, Gi

g can disguise the true nature of stress transfer

between the film and substrate [14]. The dilemma is that

such an interface layer does exist physically, but little is

known about its uniformity, thickness, and elastic modulus

[14]. The S–L model is thus advised to be used with caution,

preferably after experimental verification [14]. The way out

of this dilemma suggested by Murray and Noyan, [14, 15],

is to develop a more comprehensive model which captures

not only the stress transfer nature of the film–substrate

interface but also the information of both the near (to the

interface) and remote parts of the substrate, which may be

significantly thicker than the film. Experimentally, the

parameter Gi

g changes due to interface evolution during

thermal processing [14]. Therefore, different interface

states match different Gi

g values, and this should be reflected

by some physical parameters, which is the goal this article

aims to achieve. This article presents a model to link Gi

g with

the normal stress distribution in the layer thickness

direction.

In the field of wafer bonding, the effect of surface

roughness on bonding has been widely studied. Maszara

et al. experimentally observed a periodic strain field near

the interface of a bonded pair of silicon wafers [16]. Their

X-ray topography (XRT) images clearly differentiate the

bonded areas and unbonded ‘‘voids’’. The surface wavi-

ness/roughness represented schematically in Fig. 1a and b

is responsible for the periodic strain field [16]. The closing

gap model, initially proposed by Stengl et al. [17], was

further developed by Tong and Gösele [18]. On the basis of

the model of Tong and Gösele, Yu and Suo did a com-

prehensive study on this closing gap model, and gave the

critical misfit gap amplitude for the full bonding of two

wafers [19]. It is worth pointing out that by constructing a

delicate displacement field, the model of Yu and Suo [19]

offers analytical close-form solutions for both the stress

and displacement in bonded wafers. Before we go any

further to other topics, let us briefly discuss how the closing

gap model works. When the Dupré work of adhesion is

positive (and it is positive for most cases), combining two

free surfaces into an interface reduces the net free energy

[19]. As illustrated in Fig. 1b, when the two layers are

brought together, there are only small contact areas.

Therefore, both the free areas and the free energy are large.

At this stage, the Dupré work of adhesion is the driving

mechanism to bring the two layers into contact, forming the

interface, and reducing the free energy. However, when the

layers elastically deform to contact, it increases the elastic

energy. So the competition between the energy increase due

to layer-accommodating elastic deformation and the energy

decrease due to interface formation determines the final

contact state of the two layers. For a small misfit gap, the two

layers may be bonded completely when the total energy

increase due to elastic deformation is less than the total

energy decrease due to interface formation. For the large

misfit gap case, a large elastic deformation is required to
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Fig. 1 (a) Schematic diagram of sinusoidally varying interface and

the coordinate system. (b) The cross-section normal to the interface

and layer dimensions. (a) and (b) are after reference [19]. (c) The final

contact state: fully-bonded state
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contact, and thus there will be too much elastic energy

increase for the layers to have a full contact. They will be

partially bonded and form the pattern of ‘‘bonded–

unbonded–bonded’’ or ‘‘interface–void–interface’’, which

is typical in the micro-scale world [20]. Since the surface

roughness in Yu and Suo’s model is an ideal sinusoidal

variation, Gui et al. developed a more realistic model for

the surface topography with the asperities of Gaussian

distribution [21]. Yu and Suo’s model depicts the nature of

the layer interface as ‘‘interface–void–interface’’ type at

initial stage. We also assume the two layers are fully-bon-

ded at the final stage, forming a wavy interface similar to

Liau’s case (shown in Fig. 1c), in which the wavy interface

is formed by crystal dislocations [22]. At the same time, the

model used here is also able to describe the behavior of the

substrate much thicker than the film. The layers are infinite

in the x and y directions (the coordinate system is shown in

Fig. 1). The sinusoidally varying surface roughness is

included in the parameters of the roughness wavelength and

misfit gap amplitude. As the S–L model links the interfacial

stress states with the middle-surface displacements of the

layers [9, 15], and the displacement information is available

in the model presented here, we incorporate such interfacial

effects at z = 0 based on the fact of that the interface layer

thickness is very small (for example, the interface layer

thickness for a Cu/Si film–substrate composite is on the

scale of a nanometer [15]). The interfacial parameter Gi

g ;

along with the layers’ elastic constants and dimensions

determines the normal stress distribution along the thick-

ness. This suggests that for a given composite structure with

specified elastic constants and dimensions, the measure-

ments of the surface roughness (before contact/bonding)

and those of the normal stress across the thickness (after

being fully-bonded) can be used to determine Gi

g : This is

different from the approach by Noyan and Murray et al. [14,

15], which measures the normal stress along the layer length

to solve for Gi

g by Eq. 1. Also by providing the information

of the stress normal to the interface, the current model

could be used to study the interdiffusion of two bonded

layers [23, 24].

Model development

In Fig. 1a and b, the surfaces of the two layers are sche-

matically shown. The layers are infinite in the x–y

directions, and sinusoidally varying with a misfit gap

amplitude of 2H and wavelength of L. t1 and t2 are the

thickness of the layer 1 and 2 respectively. When the ratio
H
L is small, linear elasticity theory applies [19].

Navier’s equation is applied as follows, when we assign

the displacement field as (u1,u2,u3) = (u,v,w). Navier’s

equation states:

ð1� 2mÞui;jj þ uj;ji ¼ 0: ð2Þ

Here uj;ji ¼ o2uj

oxioxj
: The stress field is:

rij ¼
E

1þ m
1

2
ui;j þ uj;i

� �
þ m

1� 2m
uk;kdij

� �
: ð3Þ

E and m are the layers Young’s modulus and Poisson’s

ratio. dij is the Kronecker delta. The displacement field is

assumed to have the following forms [19]:

uiðx; y; zÞ ¼ sinðkxÞcosðkyÞf iðzÞ
viðx; y; zÞ ¼ cosðkxÞsinðkyÞf iðzÞ
wiðx; y; zÞ ¼ cosðkxÞcosðkyÞgiðzÞ;

ð4Þ

where superscript i(i = 1,2) stands for the different layers

and k = 2p/L. Originally wi in Yu and Suo’s model [19]

contained a rigid body translation term, which has no effect

on the stress and is ignored here. The unknown functions f i

and gi can be solved by substituting Eq. 4 into Eq. 2, which

gives the following coupled ordinary differential equations

with constant coefficients:

1� 2mð Þf 00 � 4ð1� mÞf � g0 ¼ 0

1� mð Þg00 � ð1� 2mÞgþ f 0 ¼ 0;
ð5Þ

with ()0 = d()/d(kz). The equations above have the

following solutions:

f 1ðzÞ ¼ ða1 þ a2kzÞe
ffiffi
2
p

kz þ ða3 þ a4kzÞe�
ffiffi
2
p

kz

f 2ðzÞ ¼ ða5 þ a6kzÞe
ffiffi
2
p

kz þ ða7 þ a8kzÞe�
ffiffi
2
p

kz

g1ðzÞ ¼ ½�
ffiffiffi
2
p

a1 þ ð3� 4m1 �
ffiffiffi
2
p

kzÞa2�e
ffiffi
2
p

kz

þ ½
ffiffiffi
2
p

a3 þ ð3� 4m1 þ
ffiffiffi
2
p

kzÞa4�e�
ffiffi
2
p

kz

g2ðzÞ ¼ ½�
ffiffiffi
2
p

a5 þ ð3� 4m2 �
ffiffiffi
2
p

kzÞa6�e
ffiffi
2
p

kz

þ ½
ffiffiffi
2
p

a7 þ ð3� 4m2 þ
ffiffiffi
2
p

kzÞa8�e�
ffiffi
2
p

kz:

ð6Þ

ai (i = 1–8) are constants to be determined by the

boundary conditions. Here m1 and m2 are Poisson’s ratios of

layers 1 and 2.

The four boundary conditions for layer 1 are:

(I)

z ¼ t1; r
1
zz ¼ 0

(II)

z ¼ t1; r
1
xz ¼ 0

(III)

z ¼ 0;w1 ¼ �H1

2
cosðkxÞ cosðkyÞ
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(IV)

z ¼ 0; r1
xz ¼

Gi

g
½u1ðx; y; t1

2
Þ � u2ðx; y;� t2

2
Þ�: ð7Þ

H1 is the amplitude of the surface displacement of layer 1

normal to the interface. The first three boundary conditions

are same as those in Yu and Suo’s [19]. The first two state that

on the free surface, the normal and shear stresses are zero.

Equation 3 in conjunction with Eq. 4 gives ri
xz ¼ Ei

2ð1þtiÞ

ðui
z þ wi

zÞ ¼ Ei

2ð1þtiÞ sinðkxÞ cosðkyÞðdf i

dz � kgÞ and ri
yz ¼ Ei

2ð1þtiÞ

ðvi
z þ wi

yÞ ¼ Ei

2ð1þtiÞ cosðkxÞ sinðkyÞðdf i

dz � kgÞ; which implies

that in Eq. 7, to set rxz
1 = 0 at z = t1 and rxz

2 = 0 at z = –t2 also

means ryz
1 = 0 at z = t1 and ryz

2 = 0 at z = –t2. In the fourth

boundary condition, Gi and g are the interface layer shear

modulus and thickness, respectively. u1ðx; y; t1
2
Þ and

u2ðx; y;� t2
2
Þ are the two x-axis displacements of the two

layers’ middle-surfaces. And the fourth boundary condition

is the interfacial shear stress expression of the S–L model [9,

15]. In Suhir’s L–S model [11], a similar expression is given

r1
xz ¼ KGi

g ½u1ðx; y; t1
2
Þ � u2ðx; y;� t2

2
Þ�: K is a constant and

K ¼ 1
3
ð t1

G1
þ t2

G2
Þ [10, 13]. G1,G2 above are the shear moduli of

layer 1 and layer 2, respectively. In this article, we treat Gi

g as a

parameter whose value varies, in order to study the stress

change. In that sense, it does not matter whether such

proportionality factor is Gi

g or KGi

g : Yu and Suo set the shear

stress r xz at interface (z = 0) to be zero [19], which is our
Gi

g ¼ 0 case. Similarly, the four boundary conditions for layer

2 are:

(V)

z ¼ �t2; r
2
zz ¼ 0

(VI)

z ¼ �t2; r
2
xz ¼ 0

(VII)

z ¼ 0;w2 ¼ H2

2
cosðkxÞ cosðkyÞ

(VIII)

z ¼ 0; r2
xz ¼

Gi

g
½u1ðx; y; t1

2
Þ � u2ðx; y;� t2

2
Þ�: ð8Þ

Here H2 is the amplitude of the surface displacement of

layer 2 normal to the interface. Equations 7 and 8 give the

eight boundary conditions needed to solve for the eight

unknown ais. However, it should be noted that H1 and H2

are still unknown at this stage. Therefore, the ais should be

first expressed symbolically by H1 and H2, and then by H.

The detailed procedure is given in appendix. The two

layers are assumed to be fully-bonded as shown in Fig. 1c,

and the corresponding physical condition requires H1 and

H2 to satisfy the following relation [19]:

H1 þ H2 ¼ 2H; ð9Þ

which means that the amplitude of relative displacement of

the layers is equal to the misfit gap amplitude. And at z = 0,

the continuity of normal stress of r zz requires the following

equation to be satisfied [19]:

r1
zzðz ¼ 0Þ ¼ r2

zzðz ¼ 0Þ: ð10Þ

Equations 9 and 10 are the two equations to determine

H1 and H2, and thus ais.

Results and discussion

In all the cases studied here, E1 = 129.8 GPa, m1 = 0.343

for Cu, E2 = 162.5 GPa, m2 = 0.224 for Si, [15], and

L = 1 lm. Gi ¼ k E1þE2

2
and g = 1 nm. k is the dimen-

sionless parameter we actually vary during the

computation. Although g can be varied, g = 1 nm is chosen

in this study because the interface thickness of Cu/Si film–

substrate composite structure is of the same order of

magnitude. From Eq. 3, the normal stress along the

thickness in layer 1 is expressed as

r1
zz ¼ cosðkxÞ cosðkyÞ/ðzÞ ¼ cosðkxÞcosðkyÞE1

1þ m1

� ½�2ke
ffiffi
2
p

kza1þ ð2
ffiffiffi
2
p

k� 2k2z� 2
ffiffiffi
2
p

km1Þe
ffiffi
2
p

kza2

� 2ke�
ffiffi
2
p

kza3þ ð�2
ffiffiffi
2
p

k� 2k2zþ 2
ffiffiffi
2
p

km1Þe�
ffiffi
2
p

kza4�:
ð11Þ

Clearly, rzz
1 oscillates periodically in the x and y

directions. The following study only presents the

variation of the amplitude /(z), and all our computation

results from Eq. 11 when setting k = 0 exactly match those

obtained by Yu and Suo [19].

In Fig. 2a, t1 = t2 = 1 lm and H
L ¼ 1

1000
: The distribution

of /(z) is shown with k = 0, 0.05, 0.1, 0.3, 0.5, and 1. When

k = 0, /(z) monotonically decreases from 351.4 MPa at

z = 0 to 0 MPa at z = 1 lm. For k = 0.05, /(z) decreases

from 258.4 MPa at z = 0 to 0 MPa at z = 1 lm, and the

decrease is still monotonic. However, for k = 0.1, the curve

no longer monotonically decreases. /(z) starts with

288.6 MPa at z = 0, increases to 607.5 MPa around

0.11 lm, and decreases to 0 at z = 1 lm. For k = 0.3, 0.5,

and 1, /(z) becomes monotonically decreasing again. For

Fig. 2b, all the parameters are kept same as those in
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Fig. 2a, except that t2 is changed to 5 lm. The curve with

k = 0 is still monotonically decreasing. The curves for

k = 0.05 and 0.1 are of the increasing–decreasing type.

From the curves with k = 0.3, 0.5, and 1, a transition from

the decreasing–increasing type of curve to the monotoni-

cally decreasing type of curve is shown. In this case, there is

a little difference in / (0) for all the curves with different ks.

In Fig. 2c, t1 is set to be 2 lm, and all other parameters are

same as those in Fig. 2b. Clearly, in Fig. 2c there is a very

little difference for the curves with different ks. So, we

conclude that the stress distribution along the thickness is

sensitive to both layer thickness dimensions from the

comparison of Fig. 2b and 2c. Mathematically, the combi-

nation of the e
ffiffi
2
p

kz terms associated with a1 and a2 and the

e�
ffiffi
2
p

kz terms associated with a3 and a4 can generate dif-

ferent normal stress profiles as reflected in Fig. 2a, b, and c.

Physically, when the layer thickness increases, the ratio of

the interface to the (bulk) volume becomes small, which

also means that the interface effects become less important.

This is the mechanism responsible for the normal stress

size-dependent distribution properties, and explains why the

normal stress profiles look similar in Fig. 2c when the

layers thickness is relatively large. Analogously, both the

experimental and theoretical analysis (Eq. 11 [14, 15]) also

demonstrate the sample size-dependent sensitivity of the

interface layer effects. In the experiment [14], the large

difference of the horizontal (parallel to the interface) nor-

mal stress distribution between a 3 lm · 3 lm and a

14 lm · 14 lm film is demonstrated.

In Fig. 3, the roughness effect is studied. Two cases, one

with k = 0, and the other with k = 0.1 are compared

together. For these two cases, t1 = 1 lm and t1 = 5 lm. H
L

is chosen to be 1 · 10–3, 2 · 10–3, or 5 · 10–3. It is shown

in Fig. 3 that larger H
L generates a larger magnitude of /(z)

across the whole thickness, which is physically under-

standable because a larger H
L requires larger elastic

deformation so that the gap can be closed and thus a larger

corresponding stress is generated. For the curves with

k = 0.1, the change in the maximum values is also very

significant. However, the parameter H
L does not change type

of the curve: for k = 0 the curves are all monotonically

decreasing, while for k = 0.1, the curves all increase and

then decrease. The roughness (indicated by H
L) offers the

source for the normal stress (as the model requires the

closing-up). But it is the interfacial shear stress (indicated

by k) that re-distributes the normal stress inside layers.

Without the interfacial shear stress, the normal stress dis-

tribution pattern can only be monotonically decreasing.

Figure 2a–c demonstrates the thickness-dependence of

normal stress distribution due to the interface layer effect,
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Fig. 2 /(z) distributions along the Cu layer thickness for different
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Here the case with no interface layer effect (k = 0) and the case with

the interface layer effect (with k = 0.1) are compared together. The

layer thicknesses (t1 = 1 lm and t2 = 5 lm) are same for both cases
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and Fig. 3 demonstrates the roughness influence. The

normal stress in the layers depends significantly on the

layer thickness, surface roughness, and interface layer

conditions.

The changes in the normal stress distribution due to the

interface layer conditions could also have a significant

impact on the formation, nucleation, and interaction of

dislocations [16, 25], penetration of twins across the

interface [24], interdiffusion [23, 24], and bonding

strength. It is also known that stress inside semiconductor

layers can either increase or decrease the charge carrier

mobility, which has a direct influence on the electronic

properties of the CMOS transistors made by the wafer-

bonding technique [16].

It is interesting to compare this work with Liau’s

[22]. It is noticed that Liau’s model predicates that the

normal stress distribution along the thickness direction

decreases monotonically and exponentially from the

interface [22], which is the same scenario as the k = 0

cases in Figs. 2 and 3. The expression of Eq. 11 impli-

cates that the normal stress distribution patterns of

monotonically decreasing, increasing–decreasing and

decreasing–increasing can all exist. Liau’s model also

assumes that the dislocations are all localized at the

interface [22]. However, it can also be rigorously shown

that Liau’s model assumes that the interface is ideal even

with the presence of dislocations [26]. With the accu-

mulation of dislocations or other defects at the interface,

the interface strength will be weakened and interfacial

slip will be allowed, so the interface should be modeled

as a damaged one. The damaged interface along with the

layers-thickness dimensions and roughness can signifi-

cantly alter the normal stress distribution as demonstrated

in Figs. 2 and 3. Freund and Suresh’s analysis shows that

the occurrence of dislocations depends on the (local)

strain energy [25], which is directly related to the stress

distribution. The normal stress distribution along the

thickness direction is usually the dominant one in wafer-

bonding materials. As demonstrated by Yu and Suo [19],

Liau [22], and this work, for an ideal interface formed by

wafer-bonding, the normal stress decreases monotonically

from the interface and the maximum stress is at the

interface. This is the reason why dislocations in wafer-

bonded materials are often localized at the interface and

virtually nowhere else [22], if the bonding interface is

ideal (or has very high bonding strength). However, the

increasing–decreasing normal stress distribution pattern of

a damaged interface shifts the maximum stress from the

interface into the layer, which directly results in the fol-

lowing consequence: the formation of new dislocations

will be most likely to occur inside the layer rather than at

the interface. Accordingly, the propagation of dislocation

may also be affected because of the different stress field.

The average / in layer 1 is defined as follows:

/ ¼
R t1

0
/ðzÞdz

t1
: ð12Þ

The feature thickness plotted in Figs. 4 and 5, here, is

defined as the length at which /(z) is reduced to 5% of

/(0). The 5% here is an arbitrary number taken to follow

Murray and Noyan’s definition [15]. / and the feature

thickness together give an overall idea of the stress

distribution, namely its magnitude and the degree of

stress localization. In Fig. 4, k is varied, while all other

parameters are same as in Fig. 2b. As shown in Fig. 4, both

/ and the feature thickness keep increasing before and after

k = 0.15. At k = 0.15, both curves experience a sudden

jump. This is also reflected in Fig. 2b. In Fig. 2b, the /(z)

curves with k = 0.05 and 0.1 are the increasing–decreasing

type of curves, which have larger /: For the curves with

k = 0.3, 0.5, and 1, they are either decreasing–increasing or

monotonically decreasing types of curve. They decrease

much more rapidly, and some parts of /(z) are even

negative. Therefore, as compared to the increasing–

decreasing type of curves, /(z)s of the curves with

k = 0.3, 0.5, and 1 reduce much more rapidly as one

moves from the interface. This is why the curves with

k = 0.3, 0.5, and 1 have much smaller / and feature

thickness. This pattern change in the stress distribution is

also responsible for the jump in Fig. 4. Figure 5 examines

the same case as in Fig. 2c when both films are relatively

thick. As shown in Fig. 5, clearly / increases continuously,

but slowly as k changes. Compared with that of Fig. 4, the

variation of / in Fig. 5 is very small. The feature thickness

in Fig. 5 is either 0.54 or 0.56 lm. Although there is a
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Fig. 4 The average stress ð/Þ inside the Cu layer and the feature

thickness as Gi=g (that is, k) changes in the case of t1 = 1 lm and

t2 = 5 lm, as in Fig. 2b
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feature thickness jump in Fig. 5, the jump magnitude is

quite small compared with that of Fig. 4. Clearly there is

no strong pattern change of stress distribution in Fig. 2c.

These characteristics in Fig. 5 are also clearly reflected in

Fig. 2c. In one word, the differences of the normal stress

profiles in Fig. 2b and 2c are responsible for the significant

difference between Figs. 4 and 5.

Without the interface effect (i.e., when k = 0), the nor-

mal stress amplitude along the thickness always keeps

monotonically decreasing and the maximum is at z = 0

[19]. With the variation of k, there can be quite different

normal stress profiles. The layer thickness, roughness, and
Gi

g ðGi ¼ k E1þE2

2
Þ are responsible for the normal stress var-

iation in a given bilayered composite. Here k is the fitting

factor, which indicates the interface layer effect as reflected

in Eq. 8. Larger k indicates larger interfacial shear stress

and for a perfect/ideal/no-slip interface, the interfacial

shear stress is zero (k = 0). The variation of k in this article

represents different interfacial (stress) states. The original

S–L model was developed to evaluate how well the two

layers are adhered by analyzing the influence of the inter-

facial slip and stress states [9]. With the availability of the

micro-Raman technique for measuring the nonuniform

normal stress through the layer thickness [27], it is possible

to measure the normal stress and layer surface roughness,

and then use the model presented in this article to deter-

mine Gi

g : The bonding strength is usually measured by a

method based on crack propagation theory, which does not

consider complex stress distribution due to the interface

layer effect as analyzed in this article [28]. With experi-

mental information about Gi

g and the analysis of the normal

stress distribution, it may be possible to obtain a more

accurate evaluation of the interface bonding strength.

Concluding remarks

This article presents a model of elastic closing gap that

incorporates the interface layer effect. The bonding surfaces

are assumed to sinusoidally vary in both the x and y direc-

tions. The model directly links the normal stress distribution

to the surface roughness and the interfacial parameter Gi

g and

offers a method to determine the latter value experimentally.

The influence of Gi

g along with the layers thickness and

roughness on the normal stress distribution is studied. As

compared to the ideal interface, which can only have the

monotonically decreasing pattern of normal stress along the

thickness direction, a damaged interface can have one of the

following three patterns of normal stress distribution along

the thickness direction: (1) monotonically decreasing, (2)

increasing–decreasing pattern or (3) a decreasing–increasing

pattern. The ideal interface model indicates that the maxi-

mum stress locates at the interface, so that the defects such as

dislocations are most likely to be formed at the interface.

However, the model presented here indicates that the dam-

aged interface along with the thin layer thickness can shift

the point of maximum normal stress from the interface into

the layer. This results in the consequence that new defects

like dislocations are more likely to be formed inside the layer

rather than at the interface. However, when the layer thick-

ness is large enough, our model indicates that the damaged

interface causes almost the same stress distribution pattern as

that of an ideal interface.

The model presented in this article is still an idealized

model, which requires the two layers to share the same

wavelength. If the two surfaces sufficiently match, this

model is a good approximation. Otherwise, a more com-

prehensive model needs to be developed. The inelastic

relaxation and influence of dislocations on the interface

layer properties are not included in this model, either.
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Appendix

In the boundary conditions as given by Eqs. 7 and 8, the

fourth and eighth are equivalent to the following two:

r1
xzðz ¼ 0Þ � r2

xzðz ¼ 0Þ ¼ 0

r1
xzðz ¼ 0Þ þ r2

xzðz ¼ 0Þ ¼ 2Gi

g
½u1ðz ¼ t1

2
Þ � u2ðz ¼ � t2

2
Þ�:

We arrange them in the last two rows of the following

matrix form:
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Fig. 5 The average stress ð/Þ inside the Cu layer and the feature

thickness as Gi=g (that is, k) changes in the case of t1 = 2 lm and

t2 = 5 lm, as in Fig. 2c
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m11 m12 m13 m14 0 0 0 0

m21 m22 m23 m24 0 0 0 0

m31 m32 m33 m34 0 0 0 0

0 0 0 0 m45 m46 m47 m48

0 0 0 0 m55 m56 m57 m58

0 0 0 0 m65 m66 m67 m68

m71 m72 m73 m74 m75 m76 m77 m78

m81 m82 m83 m84 m85 m86 m87 m88

2
666666666666664

3
777777777777775

a1

a2

a3

a4

a5

a6

a7

a8

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

0

0

� H1

2

0

0

H2

2

0

0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð13Þ

With mij s given as:

m11 ¼ �2ke
ffiffi
2
p

kt1 ;

m12 ¼ kð2
ffiffiffi
2
p
� 2kt1 � 2

ffiffiffi
2
p

m1Þe
ffiffi
2
p

kt1 ;

m13 ¼ �2ke�
ffiffi
2
p

kt1 ;

m14 ¼ kð�2
ffiffiffi
2
p
� 2kt1 þ 2

ffiffiffi
2
p

m1Þe�
ffiffi
2
p

kt1

m21 ¼ 2
ffiffiffi
2
p

ke
ffiffi
2
p

kt1 ;

m22 ¼ kð�2þ 4m1 þ 2
ffiffiffi
2
p

kt1Þe
ffiffi
2
p

kt1 ;

m23 ¼ �2
ffiffiffi
2
p

ke�
ffiffi
2
p

kt1 ;

m24 ¼ kð�2þ 4m1 � 2
ffiffiffi
2
p

kt1Þe�
ffiffi
2
p

kt1

m31 ¼ �
ffiffiffi
2
p

; m32 = 3–4m1,

m33 ¼
ffiffiffi
2
p

;

m34 = 3–4m1

m45 ¼ �2ke�
ffiffi
2
p

kt2 ;

m46 ¼ kð2
ffiffiffi
2
p
þ 2kt2 � 2

ffiffiffi
2
p

m2Þe�
ffiffi
2
p

kt2 ;

m47 ¼ �2ke
ffiffi
2
p

kt2 ;

m48 ¼ kð�2
ffiffiffi
2
p
þ 2kt2 þ 2

ffiffiffi
2
p

m2Þe
ffiffi
2
p

kt2

m55 ¼ 2
ffiffiffi
2
p

ke�
ffiffi
2
p

kt2 ;

m56 ¼ kð�2þ 4m2 � 2
ffiffiffi
2
p

kt2Þe�
ffiffi
2
p

kt2 ;

m57 ¼ �2
ffiffiffi
2
p

ke
ffiffi
2
p

kt2 ;

m58 ¼ kð�2þ 4m2 þ 2
ffiffiffi
2
p

kt2Þe
ffiffi
2
p

kt2

m65 ¼ �
ffiffiffi
2
p

; m66 = 3–4m2,

m67 ¼
ffiffiffi
2
p

; m68 = 3–4m2,

m71 ¼
ffiffiffi
2
p

E1ð1þm2Þ
E2ð1þm1Þ ;

m72 ¼ ð�1þ 2m1Þ E1ð1þm2Þ
E2ð1þm1Þ ;

m73 ¼ �
ffiffiffi
2
p

E1ð1þm2Þ
E2ð1þm1Þ ;

m74 ¼ ð�1þ 2m1Þ E1ð1þm2Þ
E2ð1þm1Þ ;

m75 ¼ �
ffiffiffi
2
p

;

m76 = 1–2m2,

m77 ¼
ffiffiffi
2
p

;

m78 = 1–2m2

m81 ¼
ffiffi
2
p

E1k
1þm1
� 2Gi

g e
ffiffi
2
p

2
kt1 ;

m82 ¼ E1kð�1þ2m1Þ
1þm1

� Gikt1
g e

ffiffi
2
p

2
kt1 ;

m83 ¼ �
ffiffi
2
p

E1k
1þm1

� 2Gi

g e
�
ffiffi
2
p

2
kt1 ;

m84 ¼ E1kð�1þ2m1Þ
1þm1

� Gikt1
g e

�
ffiffi
2
p

2
kt1 ;

m85 ¼
ffiffi
2
p

E2k
1þm2
þ 2Gi

g e
�
ffiffi
2
p

2
kt2 ;

m86 ¼ E2kð�1þ2m2Þ
1þm2

� Gikt2
g e

�
ffiffi
2
p

2
kt2 ;

m87 ¼ �
ffiffi
2
p

E2k
1þm2

þ 2Gi

g e
ffiffi
2
p

2
kt2 ;

m88 ¼ E2kð�1þ2m2Þ
1þm2

� Gikt2
g e

ffiffi
2
p

2
kt2

The strategy of solving Eq. 13 is to express a1, a2, a3 via a4

and a5, a6, a7 via a8 first, and then substitute them into the last

two equations of Eq. 13 to solve a4 and a8. Therefore, we have

a1 ¼

V1 m12 m13

V2 m22 m23

V3 m32 m33

������
������

D
¼ k1

D
a4 �

H1

2D
ðm12m23 � m13m22Þ;

ð14Þ

a2 ¼

m11 V1 m13

m21 V2 m23

m31 V3 m33

������
������

D
¼ k2

D
a4 þ

H1

2D
ðm11m23 � m13m21Þ;

ð15Þ

and

a3 ¼

m11 m12 V1

m21 m22 V2

m31 m23 V3

������
������

D
¼ k3

D
a4 þ

H1

2D
ðm12m21 � m11m22Þ;

ð16Þ

here D, V1, V2, and V3 are defined as

D ¼
m11 m12 m13

m21 m22 m23

m31 m32 m33

�������

�������
;V1 ¼ �m14a4; V2 ¼ �m24a4;

V3 ¼ �
H1

2
� m34a4:

And k1, k2, and k3 are k1 = –m14(m22m33–m23m32)+m24

(m12m33–m13m32)–m34(m12m23–m13m22), k2 = m14(m21m33–

m23m31)–m24(m11m33–m13m31) + m34(m11m23–m13m21), k3 =

m14(m22m31–m21m32)–m24(m12m31–m11m32) + m34(m12m21–

m11m22).
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a5, a6, and a7 are:

a5 ¼

V5 m46 m47

V6 m56 m57

V7 m66 m67

������
������

J
¼ l1

J
a8 þ

H2

2J
ðm46m57 � m47m56Þ;

ð17Þ

a6 ¼

m45 V5 m47

m55 V6 m57

m65 V7 m67

������
������

J
¼ l2

J
a8 �

H2

2J
ðm45m57 � m47m55Þ;

ð18Þ

and

a7 ¼

m45 m46 V5

m55 m56 V6

m65 m66 V7

������
������

J
¼ l3

J
a8 �

H2

2J
ðm46m55 � m45m56Þ;

ð19Þ

with J, V5, V6 and V7 defined as

J ¼
m45 m46 m47

m55 m56 m57

m65 m66 m67

�������

�������
; V5 ¼ �m48a8; V6 ¼ �m58a8;

V7 ¼
H2

2
� m68a8:

l1, l2, and l3 are l1 = –m48(m56m67–m57m66) + m58

(m46m67–m47m66)–m68(m46m57–m47m56), l2 = m48(m55m67–

m57m65)–m58(m45m67–m47m65) + m68(m45m57–m47m55).

And l3 = m48(m56m65–m55m66)–m58(m46m65–m45m66) +

m68(m46m55–m45m56).

Substitution of the expressions of a1, a2, a3in Eqs. 14,

15, 16 and a5, a6, a7 in Eqs.17, 18, 19 into the last two

equations of Eq. 13 gives following equations of a4

and a8:

M11a4þM12a8¼ H1

2Da1þH2

2J a2

M21a4þM22a8¼ H1

2Dc1þH2

2J c2

	
; ð20Þ

with Mijs defined as M11 ¼ m71k1þm72k2þm73k3

D þ m74;

M12 ¼ m75l1þm76l2þm77l3
J þ m78; and M21 ¼ m81k1þm82k2þm83k3

D

þm84; M22 ¼ m85l1þm86l2þm87l3
J þ m88:

And a1 and a2 are defined as

a1 ¼ m71ðm12m23 � m13m22Þ � m72ðm11m23 � m13m21Þ
� m73ðm12m21 � m11m22Þ

and

a2 ¼ �m75ðm46m57 � m47m56Þ þ m76ðm45m57 � m47m55Þ
þ m77ðm46m55 � m45m56Þ:

c1 and c2 are

c1 ¼ m81ðm12m23 � m13m22Þ � m82ðm11m23 � m13m21Þ
� m83ðm12m21 � m11m22Þ;

and

c2 ¼ �m85ðm46m57 � m47m56Þ þ m86ðm45m57 � m47m55Þ
þ m87ðm46m55 � m45m56Þ:

a4 and a8 are solved as

a4 ¼ A1H1 þ A2H2; a8 ¼ B1H1 þ B2H2; ð21Þ

with Ai and Bi (i = 1, 2) given as

A1 ¼
a1M22� c1M12

2DðM11M22 �M12M21Þ
;A2 ¼

a2M22� c2M12

2JðM11M22�M12M21Þ
:

and

B1 ¼
c1M11� a1M21

2DðM11M22 �M12M21Þ
;B2 ¼

c2M11� a2M21

2JðM11M22�M12M21Þ
:

Substitute the above solution of a8 and a4 into Eqs. 14,

15, and 16, and 17, 18, and 19, we have

a1 ¼ C1H1þC2H2; a2 ¼ F1H1þF2H2; a3 ¼ I1H1þ I2H2

a5 ¼ P1H1þP2H2; a6 ¼ Q1H1þQ2H2; a7 ¼ R1H1þR2H2;

ð22Þ

with

C1 ¼
k1

D
A1 �

m12m23 � m13m22

2D
; C2 ¼

k1

D
A2;

F1 ¼
k2

D
A1 þ

m11m23 � m13m21

2D
; F2 ¼

k2

D
A2;

I1 ¼
k3

D
A1 þ

m12m21 � m11m22

2D
; I2 ¼

k3

D
A2;P1 ¼

l1
J

B1;

P2 ¼
l1

J
B2 þ

m46m57 � m47m56

2J
;

and

Q1 ¼
l2
J

B1;Q2 ¼
l2
J

B2 �
m45m57 � m47m55

2J
;R1 ¼

l3
J

B1;

R2 ¼
l3

J
B2 �

m46m55 � m45m56

2J

Equations 9 and 10 result in the following two

equations:
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H1 þ H2 ¼ 2H
H1 þ rH2 ¼ 0

	
: ð23Þ

Here r is defined as

with

b ¼ E1ð1þ m2Þ
E2ð1þ m1Þ

Therefore, H1 and H2 are solved as follows

H1 ¼
�2rH

1� r
;H2 ¼

2H

1� r
: ð24Þ

Substitution of the above solution of H1 and H2 into Eqs.

21 and 22 gives the solutions of all ais.
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